
Information Sciences and Computer Engineering, Vol. 1, No. 2, (2010) 75–85

International Journal of
Information Sciences and Computer Engineering

j o u r n a l h o m e p a g e : http://www.ijisce.org

Constrained Navigation with Mandatory Waypoints in Uncertain Environment

François Lucasa, Christophe Guettiera, Patrick Siarryb,∗, Anne-Marie Milcenta, Arnaud de La Fortellec

aSagem Defense and Security, 27 rue Leblanc, 75012 Paris, France
bParis XII University, LiSSi Laboratory, 61 avenue du Général de Gaulle, 94010 Créteil, France

cMines ParisTech, CAOR Robotics Laboratory, Mathématiques et Systèmes, 60 boulevard Saint Michel, 75006 Paris, France

Abstract– This paper presents a hybrid solving method for vehicle path plan-
ning problems. As part of the vehicle system architecture (vetronic), plan-
ning is dynamic and has to be activated on-line, which requires response
times to be compatible with mission execution. The proposed approach com-
bines constraint solving techniques with an Ant Colony Optimization (ACO).
The hybridization relies on a static probing technique which builds up a
search strategy using a distance information between problem variables and
a heuristic solution. Various forms of this approach are compared and evalu-
ated on real world scenarios. Preliminary results exhibit response times close
to vehicle control requirements, on realistic problem instances.

Keyword: Path planning, ant colony optimization, probing, TSP, constraint
programming, search.

1. Introduction

Path planning has been a major challenge for decades. It
comes up in various fields such as mobile robot mission planning
where the itinerary to a goal must be minimized, video games
where character trajectory determination must fit with reactivity
demands or logistics where complex resource management prob-
lems can directly affect company profits.

This paper focuses on the problem of constrained navigation
with mandatory waypoints in uncertain environment. We are
considering the case of a military vehicle on mission, which is
given a final goal and a list of intermediate objectives to reach,
whose sequence is not defined. Several constraints have to be
taken into account: overall mission time, itinerary length, en-
ergy consumption, coordination with other vehicles, etc. Military
mission planning has been so far considered separately from nav-
igation issues and defined at mission preparation time. However,
with modern on-board hardware and communication architecture
(called vetronic), mission uncertainty can be managed on-line.
In particular, it is possible to provide planning alternatives when
contingencies occur.

The goal is to provide driver decision support by advising the
best route to follow under specified mission constraints. Sys-

∗Corresponding author:
Email address: siarry@univ-paris12.fr, Ph: +33 145171567

tem efficiency criteria are solution optimality and reactivity: it
must bring the best solution in execution times close to that of
human reflexes. This application can be extended to unmanned
vehicles, where navigation plans must be updated whenever mis-
sion objectives change, the environment evolves significantly or
the expected amount of resources is not sufficient. In this paper,
we present a new hybrid approach mixing a complete constraint
solving with a metaheuristic-based guiding method. Experiments
made on representative problems (urban or open environment)
show interesting performances.

The problem is described formally in section 2. Section 3 sum-
marizes recent state of the art in the different research fields. The
proposed approach is detailed in section 4 and tested in section
5, where results are analyzed.

2. Problem Formulation and Modeling

2.1. The problem

The problem consists in finding a path from the current vehicle
location to an objective waypoint. Intermediate mandatory way-
points can be imposed to fulfill secondary objectives. According
to the user experience, two kinds of plan optimization are in-
teresting: minimizing overall duration and maximizing mission
safety. However, various other operational metrics can be im-
posed as hard constraints. In the following, we will consider only
the vehicle energy as an additional constraint.

This problem is halfway between several well-known in-
stances of the literature:

• Optimal path finding, for which the problem is to find a fast,
efficient and economic method to connect two points in a
graph;

• Travelling Salesman Problem (TSP) which is the problem
of finding the less expensive hamiltonian cycle over a series
of nodes in a compact graph;

• Vehicle Routing Problem (VRP) where costs (distance, time)
of multi-vehicle routing with capacity constraints must be
optimized;



76 Lucas et al./Information Sciences and Computer Engineering, Vol. 1, No. 2, 2010

Fig. 1. Example of alternative paths for a ground vehicle horizon, and corresponding to the line of sight of a cooperating Unmanned Aerial Vehicle (UAV).

• Constraint Satisfaction Problems where the goal is to find
correct assignments to problem variables satisfying a set of
constraints.

When relaxing operational constraints, our vehicle navigation
problem complexity is NP-hard in worst cases as it can be re-
duced in polynomial time to a TSP. The core difficulty is to find
the optimal sequence of mandatory waypoints to visit with near
real-time performances, despite a realistic problem size.

2.2. Example
As an illustrative example, let us consider the following situa-

tion inspired from a real case (figure 1). During mission execu-
tion, the planner has only a partial awareness of its environment.
The knowledge horizon is determined by direct ground observa-
tion, but additional knowledge can also be provided by vehicle
team, sensor networks or external surveillance systems. White
dots and lines represent waypoints and feasible paths between
waypoints respectively. Black dots and dashed lines represent
waypoints and uncertain paths that are situated beyond the ob-
servability horizon. Arrows show lines that continue beyond the
limits of the picture. Lastly, one or more waypoints may be im-
posed along the vehicle route.

2.3. Basic constraints
In our problem, we need to represent the ground topography

of the vehicle area of interest. A graph model is used to repre-
sent the space of possible paths, where vertices are geographical
points (for example crossroads) and edges are progression axes
(for example a road or a meadow) that can be taken by vehicles.
They are determined before the beginning of the mission using

roadmaps, digital terrain models and UAV or satellite observa-
tions.

Formally, the graph G is defined as a couple G = (V, E) where
V is the set of vertices and E is the set of edges. Vm is a subset
of V that represents the set of mandatory waypoints. A valid
path starts from vertex vstart and reaches vertex vend after having
passed through all mandatory waypoints. A set Φ of variables
φe ∈ {0, 1} is defined, where each variable is associated to an
edge e in order to model a possible path from vstart to vend. An
edge e does not belong to a feasible path when φe = 0. This is
formulated as the following constraint, where ω(v) represents the
set of incoming and outgoing edges of vertex v (incoming for ω−,
outgoing for ω+). The graph is undirected, so that ω+(v) = ω−(v)
for each v ∈ V: ∑

e ∈ ω+(vstart)

φe = 1,
∑

e ∈ ω−(vend)

φe = 1, (1)

∀v ∈ V \ {vstart, vend},
∑

e ∈ ω+(v)

φe =
∑

e ∈ ω−(v)

φe ≤ 1 (2)

Nodes vstart and vend represent current position and primary ob-
jective for the vehicle respectively. Equation (2) ensures path
connectivity and unicity while equation (1) imposes limit condi-
tions on path start and end. These constraints give a linear chain
alternating positions and mobility actions along the graph.

2.4. Capability metrics

Assuming a given date Dv associated with a position v, we
are using a path length formulation (3) often considered in Op-
erational Research (OR) [1]. Variable Dv expresses the time at
which the vehicle reaches position v (see example in figure 2).



Lucas et al./Information Sciences and Computer Engineering, Vol. 1, No. 2, 2010 77

Assuming that constants d(v,v′) represent the time taken to per-
form a movement from location v to v′, we have:

∀v ∈ V, Dv′ =
∑

(v,v′) ∈ ω−(v′)

φ(v,v′)(Dv + d(v,v′)) (3)

Constants d(v,v′) are critical decision variables in the problem and
make constraints (3) non linear. Finally, the mission schedule
can be represented as ∆ = {(v,Dv)| v ∈ V, Dv > 0}. An equiv-
alent constraint-based formulation is also used for other mission
metrics (figure 2), such as energy or capacity.

2.5. The challenges
In traditional architecture design, the notion of fast reactiv-

ity is itemized as a system requirement. However, as described
above, our problem is TSP-like and consequently of NP com-
plexity. To keep tractability, the number of mandatory waypoints
must remain realistic: on mission, rarely more than a ten of
waypoints are imposed. In addition, in our approach, on-line
planning is solved over a limited horizon from the current ve-
hicle position. It corresponds to the terrain on which the vehicle
vetronic has enough detailed information to characterise its traf-
ficability. Therefore, the number of mandatory waypoints is rela-
tively small. They correspond to short-term objectives or narrow
manoeuvres executed by the vehicle.

Note that if a plan cannot be quickly solved, the vehicle may
stop if this is possible. It is an ultimate solution that is not satis-
factory from an operational point of view. Finally, due to vetronic
processing resources, computation load, memory usage and re-
sponse time must be reduced as much as possible.

In the following, we present how a new hybrid approach, that
mixes a complete method with a metaheuristic pre-processing
mechanism, delivers compliant performances over real-case sce-
narios.

3. State of the Art

3.1. Mission Planners
3.1.1. Generic planners

Much research has been carried out on generic planning prob-
lems, often motivated by mission preparation in defense area.
Domain-independent planners [2] and formalisms such as PDDL

Graph in 2.4 is a spatial representation of possible moves (edges) and po-
sitions (nodes). Moves, that correspond to the set of positive values Φ =
{(A, B), (B,C), (C,D)}, are represented with bold arrows. We are assuming an
edge distance metric for optimization. Other operational constraints, such as pro-
tection, vulnerabiliy, available energy and security are similarly formulated in
different experiments.

Fig. 2. Illustrating a path with pass-by dates over a graph of locations and pro-
gression axes.

2.0 [3] have emerged to tackle these complex problems. The re-
lated search methods can be complemented by pre-processing or
dedicated heuristics to fit specific domain problems. However,
these approaches may not match on-line requirements of reactive
embedded systems.

3.1.2. Domain-dependent planners
Much research has been done for both military or civilian pur-

poses, relying on specific planning frameworks such as Hierar-
chical Task Network (HTN)[4]. Some specific planning tech-
niques fulfill on-line requirements, such as in [5], but may not
encompass the spectrum of operational constraints.

3.1.3. CP planners
Constraint solving in planning has been integrated into vari-

ous frameworks: this is the case of Ix-TeT [6] and HSTS [7].
In Reactive Model-based Programming Language (RMPL) [8],
an evolution of Concurrent Constraint (CC) languages, the same
paradigm is used to dynamically constrain planning representa-
tions of one or more remote agents.

3.2. Operational Research
Our problem can be considered using OR algorithms, based on

flow models. As explained in section 2.1, it can be relaxed as a
TSP, for which numerous algorithms have been proposed. Firstly,
it can be tackled with a deterministic approach (see [1] for exam-
ple). Local search methods have also been widely used for TSP
problems [9]. To solve larger TSP problem instances, where de-
terministic approaches may take exponential time to solve, new
metaheuristics have been developed. The most renown algo-
rithms are Simulated Annealing [10], Genetic Algorithms [11]
and Ant Colony Optimization (ACO) [12], for which various ver-
sions exist.

Most of CP frameworks are useful to design hybrid search
techniques, by integrating OR and Linear Programming algo-
rithms [13]. However, only a few ones such as [14], have ex-
plored on-line planning requirements.

3.3. Optimal path planning
A large number of heuristic-based search methods have been

developed, mainly on the basis of the well-known A* [15]. Re-
search has been done on memory size limitation [16], often on
the principle of iterative-deepening searches [17]. Memory sav-
ing conditions are another family [18] that allow deleting the less
interesting evaluated states. Others are dealing with the prob-
lem of anytime solution availability [19] to face situations with
uncertain execution time. Finally, much work has been done to
tackle dynamic and uncertain environments. Two families have
emerged : incremental heuristic searches and real-time heuristic
searches. Their properties are significantly different. Incremen-
tal searches consider the whole environment, and are optimal:
to be efficient, they reuse information from previous searches.
If a contingency occurs, propagation methods allow to update
information and to prevent from reconsidering the entire prob-
lem. The most optimized incremental search algorithm is cur-
rently Dynamic FSA* [20]. On the other hand, real-time heuris-
tic searches use a different approach by considering only a local
portion of the environment. They are consequently suboptimal
but very efficient on highly dynamic problem instances. Most
recent works are hierarchical methods [21].



78 Lucas et al./Information Sciences and Computer Engineering, Vol. 1, No. 2, 2010

Fig. 3. Diagram of the complete solver using probing techniques.

4. Proposed Method

4.1. Global Solving

The global solving techniques use a Constraint Programming
(CP) framework which combines a high level of expressive-
ness and powerful constraint solving techniques. The {0, 1}
flow problem (see formulas (1) and (2)) is expressed with vari-
ables and arithmetical constraints. The formulation can support
multiple distance metrics over paths, even non-linear ones (for-
mula (3)). This approach is very interesting to represent tactical
mobility (positions, progression axes, objectives, visibility. . . ),
and vehicle abilities (fuel, trafficability. . . ). Problem formula-
tion and global solving method have been implemented with the
CLP(FD) domain of SICStus Prolog library. It uses state-of-the-
art in discrete constrained optimization techniques:

• Arc Consistency-5 (AC-5) [22] for constraint propagation,
that is managed by CLP(FD) predicates. When a variable
domain get reduced, AC propagates domain variables until
a fixed point is reached.

• Variable filtering with correct values, using specific la-
belling predicates to instantiate problem domain variables.
AC being incomplete, value filtering guarantees the search
completeness.

• Tree search with standard backtracking when variable in-
stantiation fails.

• Branch and Bound (B&B) for cost optimization, using min-
imize predicate.

The global solving techniques under consideration guarantee
search completeness, solution optimality and proof of optimal-
ity. Designing a good solving method consists in finding the
right variables ordering and values filtering, using domain or
generic heuristic, and in general implemented with some specific
labelling predicates.

Other possibilities exist to reinforce global solving. Arc con-
sistency can integrate domain-specific consistency rules, while
global optimization can be improved in many ways (generat-
ing bounds, branch and cut, branch and price, iterative deepen-
ing. . . ). These techniques are not in the scope of the probing
hybridization described in this paper.

4.2. The Probing Method

4.2.1. Overview
The goal of hybridizing global solving with stochastic ap-

proaches is to save the number of backtracks and to quickly fo-
cus the search towards good solutions. It consists in designing

the tree search according to problem structure, revealed by the
probe.

The idea is to use the prober to statically order problem vari-
ables, as a pre-processing. Instead of dynamic probing with ten-
tative values such as in [23], this search strategy uses a static
prober which orders problem variables to explore according to
the relaxed solution properties. Then, the solving follows a stan-
dard CP search strategy, combining variable filtering, AC-5 and
B&B.

As shown in figure 3, the probing technique proceeds in three
steps (the three blocks on the left). The first one is to establish
the solution to the relaxed problem. As a reference, we can for
example compute the shortest path between starting and ending
vertices, abstracting away mandatory waypoints. The next step
is to establish a minimal distance δ(v) between any problem vari-
able and the solution to the relaxed problem. This step can be
formally described as follows. Let Vs ⊂ V be the set of vertices
that belong to the relaxed solution. The distance is given by the
following evaluation:

∀v ∈ V, δ(v) = min
v′∈Vs

(min distance(v, v′)) (4)

where the distance is the number of vertices between v and v′.
The last step uses the resulting partial order to sort problem vari-
ables in ascending order. At the global solving level the relaxed
solution is useless, but problem variables are explored following
this order.

4.2.2. Interests
Two interesting probe properties can be highlighted:

• probe complexity: since computation of minimum distance
is polynomial between a vertex and any node is polynomial
thanks to Dijsktra or Bellman-Ford algorithms, the resulting
probe construction complexity is still polynomial in worst
cases. The complexity of quicksort can in practice be ne-
glected (see below for further details).

• probe completeness: since the probe does not remove any
value from variable domains and the set of problem vari-
ables remains unchanged, the probe still guarantees global
solving completeness.

Complexity analysis. Let γ be the cardinality of Vs and n the
one of V . The complexity of probe construction is:

• worst case performance: O(n2);

• average case performance: O(γ.n. log(n)).

Sketch of the proof. The probing method first determines the
minimal distance between all vertices v′ ∈ V ′ where V ′ = V \ Vs

and any vertex vs ∈ Vs. A Dijkstra algorithm run over a ver-
tex vs allows to compute the distance to any point of V ′ with
O(n. log(n)) worst case complexity where n is the number of
nodes in V . This has to be run over each vertex of Vs and a
comparison with previous computed values must be done for
every vertex v′, to keep the lowest one. Thus, the resulting
complexity is O(γ.n. log(n)). Variables must finally be sorted
with a quicksort-like algorithm. The worst case complexity
of this sort is O(n2) but is generally computed in O(n. log(n))



Lucas et al./Information Sciences and Computer Engineering, Vol. 1, No. 2, 2010 79

(average case performance). Hence, the worst case complex-
ity of the probing method is O(n2), but in practice behaves in
max{O(γ.n. log(n)),O(n. log(n))} = O(γ.n. log(n)).

4.2.3. Pseudocode
Algorithm 1 synthesizes probe construction mechanisms.

Firstly, a vector Ld of size n (n being the number of nodes in V)
is created and initialized with infinite values. At the end of the
execution, it will contain a value associated to each vertex, cor-
responding to the minimal distance between this vertex and the
solution to the relaxed problem. To do so, a Dijkstra algorithm
is run over each node of the solution. During a run, distances
are evaluated and replaced in Ld if lower than the existing value
(in the pseudocode, comparisons are made at the end of a run for
easier explanation). Once minimal distances are all computed,
they are used to rank the set of vertices V in ascending order (to
be used by the complete solver).

Algorithm 1 Probe construction
1: Initialize a vector Ld of distances (with infinite values)
2: Get P the best solution of the relaxed problem
3: for each node vi of P do
4: L′d ⇐ Run Dijkstra algorithm from vi

5: Ld = min(Ld, L′d) (value by value)
6: end for
7: Sort V using Ld order
8: return the newly-ordered V list

4.3. A Stochastic Relaxed Problem Solver

Instead of considering a blind shortest path to solve the relaxed
problem, the proposed algorithm implements an Ant Colony Op-
timization (ACO) search [12] that uses a similar model of the
environment.

4.3.1. The Ant Colony algorithm
ACO belongs to the family of swarm intelligence metaheuris-

tics. It has been initially developed to solve TSP instances, and
is more generally well defined for discrete and possibly dynamic
problems. It spreads a population of ants through the state space
and iteratively reuses collective memory to improve the search.
Similarly to the notion of generations in Genetic Algorithms,
ACO deploys a series of search cycles. During a cycle, each ant
builds a solution thanks to a probability law using both a guiding
heuristic and the collective memory information. The latter is de-
fined as an edge weight that varies over time and represents the
pheromone rate. In nature, ants disseminate this chemical sub-
stance to remind the path. The shorter the path, the sooner the
path will be taken by other ants and consequently the higher the
pheromone rate will be. In the ACO algorithm, the pheromone
model is updated at the end of a cycle : solutions are compared
and best ones are used to improve collective memory by reinforc-
ing related edges.

Formally, an ant builds a path through the state space by elect-
ing iteratively the next vertex to take to reach the goal. To do
so, it uses the following formula. For an ant k currently at vertex
v, the probability for choosing a reachable vertex v′ as its next
waypoint is given by formula (5).

∀(v, v′) ∈ E, v′ ∈ ω+(v), Pv′(k) =
ταv,v′η

β
v′∑

v′′∈ω+(v)
ταv,v′′η

β
v′′

(5)

P(v,v′) is a probability and thus belongs to [0, 1]. The ηv′ parame-
ter is the guiding heuristic, which is described below. The τ(v,v′)
parameter is the pheromone edge weight to go from vertex v to
vertex v′. It represents the experience acquired during previous
search cycles and tends to choose edges that belong to known
good solutions. α and β are calibration variables that balance the
importance given to τ and η parameters. It has an impact on algo-
rithm convergence, as a search with a strong β value will be very
orientated but may not allow a correct space exploration and thus
an unexpected better solution discovery. The pheromone model
update is made using the following formula:

∀(v, v′) ∈ E, τv,v′ (c + 1) = ρ.τv,v′ (c) + ∆τv,v′ (6)

where ρ is the conservation factor (1 − ρ corresponds to the
pheromone evaporation factor, in analogy with real ants). It al-
lows decreasing pheromone weight over time to remove attrac-
tion from bad paths. ∆τv,v′ equals to:

∆τv,v′ =


1

LLB
if (v, v′) belongs to the
local best solution

0 otherwise.
(7)

where LLB is the length of the local best solution. Some improve-
ments of the initial ACO algorithm can be made using [24, 25]
but they are not discussed in this paper.

4.3.2. Adaptation to the problem
In the original TSP implementation of ACO, initial ant posi-

tions are randomly defined. The guiding heuristic ηv′ returns the
distance inverse from the current point to v′: the closer this point,
the higher its probability to be selected.

In our implementation, ACO is not only used to solve the TSP-
like problem (which is the sequence of mandatory points). It is
also used to find the shortest path between each mandatory point.
Consequently, the original guiding heuristic definition is not sat-
isfactory as the shortest path between two points may be a long
but straightforward edge instead of several small but derivating
ones. That’s why a new definition has been given to ηv′ : it is
henceforth the distance inverse to go from the candidate vertex
v′ to the goal. Thus, the algorithm will tend to choose the vertex
that is the closest to the goal. In addition, all searches are starting
either from the current point or from the final objective (the path
is not a loop anymore).

The guiding heuristic orientates the search towards the final
goal, but mandatory waypoints may not be aligned with the start-
goal axis. Thus the probability that a path contains all the manda-
tory waypoints is very low, and the search will have a poor suc-
cess rate. To counter this problem, intermediate goals are iter-
atively elected during an ant search. Currently at point vm, the
election probability of a v′m point is made using formula (8).

∀v′m ∈ Vm, Pv′m =
ηvm,v′m + Dv′m∑

v′′m∈Vm

ηvm,v′′m + Dv′′m
(8)



80 Lucas et al./Information Sciences and Computer Engineering, Vol. 1, No. 2, 2010

ηvm,v′m is the distance inverse to go from vm to v′m and tends to
choose the closest point as the next intermediate goal. Dv′m is the
distance proportional function to go from v′m to the goal and tends
to avoid from keeping isolated points along the search.

4.3.3. Pseudocode of the algorithm

Algorithm 2 ACO algorithm
1: Initialize pheromone model
2: Set global best path PGB to null
3: for c⇐ 1 to C do
4: for each ant of the population do
5: Run single ant search
6: end for
7: Get local best solution PLB over all searches
8: if PLB ≤ PGB then
9: PGB ⇐ PLB

10: end if
11: Update pheromone model
12: end for
13: return the best solution PGB

Algorithm 3 Run single ant search
1: Initialise path P⇐ {vstart}
2: Define the current position vcurrent ⇐ vstart

3: Define M the set of mandatory waypoints
4: while M , ∅ do
5: Elect an intermediate goal vgoal from M
6: Remove vgoal from M
7: Reach objective vgoal

8: end while
9: Reach objective vend

10: return P

Algorithm 4 Reach objective vob j

1: while vcurrent , vob j do
2: Elect next waypoint vnext

3: Verify vnext validity
4: Add vnext to P
5: vcurrent ⇐ vnext

6: end while
7: return

Algorithm 5 Elect next waypoint
1: Get the set V ′ of vcurrent neighbors
2: Compute probability for each v′ ∈ V ′

3: Elect the next waypoint vnext

4: return The next waypoint vnext

Algorithm 2 is the main instance, and returns the best path
found. The input parameters are the graph G, the list of manda-
tory waypoints M, and the starting and ending nodes. At first,
the pheromone model P is created and initialized with constant
values (that is, every edge is given a same weight). Then a loop
is used to execute the C search cycles. In this loop, a vector of

length N is created (N being the number of ants), corresponding
to the list of potential solutions built by ants. This vector is filled
iteratively using a second loop that each time runs a single search.
Once all searches are achieved, the best local solution PLB (i.e.
the shortest one) is found, then compared to the current best solu-
tion PGB and saved if better. And before a new series of searches
is done, P is updated using the most interesting solutions locally
found. The pheromone model update procedure is not detailed
here but follows from formula (6) rules.

Algorithm 3 builds a single path and returns it (or may fail)
as a candidate solution. A path is a list of vertices that can be
reached two-two (it only contains the starting point at initializa-
tion). To ensure passing through all intermediate objectives, one
is picked from M using formula 8 and a single search (on line 7)
is launched to reach it. As long as the M list is not empty, a new
intermediate goal is elected and the path is completed. Finally, a
search is conducted to reach the final goal.

Algorithm 4 is a search that builds a path from the current point
to a specified objective. To do so, the ”ant” repeatedly chooses
the next waypoint to pass through (on line 2). As the path may
have taken a vertex that belongs to the M list, a check is pro-
ceeded. Consequently, if there are x mandatory waypoints in M,
at most x + 1 single searches will be performed. Note that a
search may fail if the ending node is expanded before all manda-
tory waypoints have been reached.

Algorithm 5 details operations done to choose a next waypoint.
Firstly, the list of neighbors (accessible nodes) is built. Then,
respective probabilities to be elected are computed using formula
(5).

In the current implementation, C and N are constants and de-
fined statically in a configuration file.

5. Results

This section focuses on the comparison of our hybrid approach
with two other methods. The first one is only based on the com-
plete solver (presented in section 4.1) without probing. We call
it the reference algorithm in the following. The second method
is the complete solver coupled with the probing mechanism that
uses a basic shortest path algorithm (described in section 4.2).
We simply call it the shortest path algorithm in the following.

5.1. Benchmarks

To make our comparison, the three methods are tested over
three distinct benchmarks that correspond to real-world scenar-
ios. They are representative of vehicle planning for modern
peace-keeping missions, both in urban and open environments.
The figure 5.1 gives an idea of problem complexity.

For each benchmark, five series of executions are done: be-
tween two series, a new mandatory waypoint is added (there are
consequently 1 to 5 waypoints per series). For each series, ten
distinct runs are led (distinct means that the couple (start, end)
changes).

5.2. ACO calibration

5.2.1. Discussion
There is no universal rule to parameterize the ACO algorithm.

It depends on the problem, essentially in terms of graph size and



Lucas et al./Information Sciences and Computer Engineering, Vol. 1, No. 2, 2010 81

Bench1 Bench2 Bench3
Environment urban urban open
Vertices 23 22 22
Edges 76 74 68
Variables 723 654 702
Constraints 1944 1750 1886

Above: table of benchmark characteristics
(the number of edges is considered over the
directed graph).
On the right: graph of benchmark 2. Various
mandatory waypoints (gray nodes) can be im-
posed. Black circles represent possible start-
ing or ending nodes.

Fig. 4. Benchmark overview

connexity. The choice of α and β can be decisive if there is a
high risk for the search to follow a dead-end path. In this case,
by privileging the η term (thus by setting β higher than α), our
research will have more chance to fail (or to find bad solutions)
if it takes a path in direction to the objective but which does not
lead to this one. An analogy can be made with A-star algorithm,
whose worse case is a labyrinth in which the only way to reach
the objective is opposite to the location’s direction. In the other
cases, it can be judicious to take more consideration to η that can
fastly lead to good solutions. The N parameter depends on the
size of the problem. The larger the problem, the more the ant
population (represented by N) should be important, as the num-
ber of possible solutions becomes high. The C parameter (num-
ber of search cycles) more particularly depends on the learning
mechanisms. As we know, the quality of the research is a com-
promise between state space exploration and convergence speed.
According to the chosen strategy, C should be low if a fast con-
vergence is wished (the reinforcing edge parameters should then
evolve fastly), or high in the contrary (and reinforcing should be
mild to maintain alternative paths).

5.2.2. Parameter values
For this test, we calibrated the ACO algorithm with the follow-

ing parameters:

• C = 10;

• N = 10;

• α = 1;

• β = 5;

• τinit = 0.5;

• ρ = 0.9.

These values were set empirically after comparing performances
on several tries.

5.3. Comparison criteria
The performance of a method is evaluated depending on sev-

eral criteria:

• the time to find the optimal solution;

• the time to prove the optimality;

• the number of backtracks done by over the branch & bound
method;

• the memory space required.

Experiments have been run on a dual core CPU working at
2.53 GHz with 2 GB of memory. The results are presented below.

5.4. Results
5.4.1. Execution time

During the runs, execution time was limited to ten seconds. It
corresponds to the upper limit of satisfiability: over this bound, it
is considered as unacceptable. In the following, a ”X” time value
indicates a computation overrun.

The table in figure 5 brings the results in terms of execution
time and backtracking. In the columns, the three algorithms
are compared : REF is the reference algorithm, S PAT H is the
shortest-path-based algorithm, and ANTS is the ACO-based al-
gorithm. For each method, the table presents:

• (a): the time needed to find the optimal solution respec-
tively;

• (b): the time needed to prove optimality;

• (c): the number of backtracks needed to find the optimal
solution.

For each, three values are given:

• MIN: the minimal value over the ten runs;

• MAX: the maximal value over the ten runs;

• TOT AL: the total value over the ten runs (i.e. the sum of
the value for each run).

If a series of runs contains at least one value that exceeds the ten
seconds limit (i.e. is marked with a ”X”), then the TOT AL value
must not be considered as exact. It should be greater in real case
because a run that failed finding a solution within the bound is
saved as an execution time of ten seconds (it would normally be
more). A series of runs is represented as a row. Far left is the
number of the benchmark. Each benchmark is evaluated using



82 Lucas et al./Information Sciences and Computer Engineering, Vol. 1, No. 2, 2010

REF SPATH ANTS
(a) (b) (c) (a) (b) (c) (a) (b) (c)

BENCH1

1MW
MIN 16 2984 2 0 297 0 31 140 0
MAX 7656 x 23594 422 1750 719 375 3360 659

TOTAL 28172 59716 91319 1139 8828 1716 938 11640 659

2MW
MIN 0 1453 0 32 328 20 62 250 0
MAX 5906 x 24320 453 2156 919 188 1734 180

TOTAL 16045 48016 52761 1500 10843 2478 1048 7719 454

3MW
MIN 2547 7109 9363 0 359 1 63 532 0
MAX x x 30860 187 2313 6271 141 2969 72

TOTAL 71704 93687 208666 702 11719 6963 863 18641 82

4MW
MIN 1312 1890 3518 0 282 1 63 329 0
MAX x x 20204 141 1703 195 407 1781 2103

TOTAL 46875 61485 107614 845 8577 964 1312 12781 2841

5MW
MIN 3578 5813 9411 16 594 1 78 703 0
MAX 9454 x 24691 359 1672 6969 219 2078 225

TOTAL 56003 84313 153560 1436 11343 9135 1404 14421 939

ALL
MIN 0 1453 0 0 282 0 31 140 0
MAX x x 30860 453 2313 6969 407 3360 2103

TOTAL 218799 347217 613920 5622 51310 21256 5565 65202 4975

BENCH2

1MW
MIN 0 735 0 0 125 0 31 156 0
MAX 7297 9797 17107 297 625 527 79 641 0

TOTAL 13859 27064 36000 685 3484 1081 580 4157 0

2MW
MIN 0 750 0 16 156 1 32 156 0
MAX 8609 x 19429 375 796 745 359 1218 531

TOTAL 11796 23872 30504 1138 3858 1835 1034 6078 705

3MW
MIN 0 734 0 47 141 16 62 219 0
MAX 4016 6063 8337 343 687 624 94 1063 46

TOTAL 5406 17812 13385 1465 3891 2394 797 5486 48

4MW
MIN 16 922 32 16 156 3 46 328 0
MAX 5937 7453 13397 391 891 671 156 1172 54

TOTAL 12279 26090 26936 736 4095 844 905 7030 101

5MW
MIN 94 735 158 31 188 3 78 391 0
MAX 3125 4312 6695 234 703 339 547 1906 786

TOTAL 8313 19298 17677 985 4014 1077 1750 9047 1351

ALL
MIN 0 734 0 0 125 0 31 156 0
MAX 8609 x 19429 391 891 745 547 1906 786

TOTAL 51653 114136 124502 5009 19342 7231 5066 31798 2205

BENCH3

1MW
MIN 15 453 0 15 344 0 47 406 0
MAX 2204 2735 5070 94 1750 133 79 1750 12

TOTAL 4907 11766 11067 250 8874 170 658 8767 14

2MW
MIN 16 203 20 46 125 18 62 110 0
MAX 594 984 1104 2734 3782 5403 640 3282 1127

TOTAL 2612 6266 5209 7515 13173 15340 1935 16205 2266

3MW
MIN 47 454 16 15 250 11 47 328 0
MAX 719 1984 1649 1656 3329 3839 922 2797 1650

TOTAL 2691 10533 5298 3015 12940 6178 1719 14470 1766

4MW
MIN 31 375 41 15 218 4 93 547 2
MAX 1281 1703 2694 1609 2390 3108 547 2469 797

TOTAL 4719 8265 9383 4484 9483 8767 1806 14548 1749

5MW
MIN 31 281 46 15 234 4 94 547 1
MAX 984 1297 2092 860 1359 1535 984 2031 1822

TOTAL 4265 7263 8628 2874 7109 5258 3125 13000 4945

ALL
MIN 15 203 0 15 125 0 47 110 0
MAX 2204 2735 5070 2734 3782 5403 984 3282 1822

TOTAL 19194 54093 39585 18138 51579 35713 9243 66990 10740

Fig. 5. Benchmark results over a total of 450 runs.



Lucas et al./Information Sciences and Computer Engineering, Vol. 1, No. 2, 2010 83

REF SPATH ANTS
BENCH1 284 162 76
BENCH2 215 167 131
BENCH3 236 320 234

Fig. 6. Maximum memory space required for a search (in MB).

Fig. 7. Graphs illustrating main results from data table.

a different number of mandatory waypoints (MW), from one to
five. The ALL rows are a synthesis of the five series over a same
scenario (MIN, MAX and TOT AL are consequently evaluated
over the fifty runs).

Lastly, execution time is expressed in milliseconds. It is impor-
tant to notice that these results were obtained using Prolog, that
uses operating system function calls. Consequently, time values
have a precision (or ”delta”) range of twenty to thirty millisec-



84 Lucas et al./Information Sciences and Computer Engineering, Vol. 1, No. 2, 2010

onds.

5.4.2. Memory consumption
Table 6 summarizes the maximum space required over all runs

of each algorithm, for the three benchmarks. As memory is freed
between two searches, it is unnecessary to present the memory
amount needed for each run. Units are in megabytes, and values
are rounded to the nearest greater integer (ceil). Bold values are
lowest values over the three algorithms.

5.5. Analysis

We do not focus on the number of backtracks, as the results
are strongly correlated with solving time. Here we analyze the
results in terms of execution time, whose values are identified by,
(a) and (b) in the table of figure 5. To have a clearer view of these
results, the figure 7 shows a series of graphs illustrating data from
ALL rows of the table in figure 5.

Graph 1 shows the minimal execution time needed to find the
optimal solution. As we can see, REF and S PAT H may find op-
timal solutions very fastly, whereas ANTS takes more time. It
corresponds to the overhead, that is the execution time needed
to run ACO searches. Graphs 3 and 5 show the maximal and
total execution times needed to find the optimal solution. The
latter allows to get an average execution time information (by
dividing the total value by fifty, which is the number of runs
considered). The first finding is that probing methods are very
efficient on benchmarks 1 and 2, whereas the reference method
(without probing) is not. The latter even exceeds several times
the ten seconds execution time limit, that means it did not find
the best solution within this bound. The second finding is that
S PAT H and ANTS methods are almost equally effective over
the benchmarks 1 and 2. However, one can see that S PAT H
is very inefficient on benchmark 3. It even has lower efficiency
than the reference method. It is due to the fact that mandatory
waypoint locations were quite distant from the start-goal axis.
ANTS is approximately two times faster than S PAT H on this
benchmark. As the overhead of ANTS is around 70 ms (3500 ms
over 50 runs), the investment is about 5% of total S PAT H com-
putation time and the gain is about 50%. As a first conclusion,
over these three benchmarks, the ACO-based method is proven to
be more efficient as it finds the best solution faster than the two
other methods. It is more stable as it adapts to various problems
without excessive performance variations.

Graphs 2, 4 and 6 respectively show minimal, maximal and to-
tal execution time needed to find the best solution and to prove
its optimality. Surprisingly, results are quite different from previ-
ously. REF algorithm is still very inefficient over benchmark 1.
Over benchmark 2, REF is not so inefficient as the total (and con-
sequently the average) execution time remains correct. In fact,
the problem is due to the failure of a search in the series with 2
mandatory waypoints (see in table 5). The reference algorithm
even reveals to be very efficient in benchmark 3 and outperforms
both S PAT H and ANTS ! In addition, S PAT H is more efficient
than ANTS : in terms of total computation time, it spends 39%
less time over benchmark 2, and 21% less time over benchmarks
1 and 3. This has to be tempered by the fact that ANTS needs
more precomputation time, which leads results of the same or-
der. But the conclusion is that ANTS does not allow to prove the
solution faster.

In terms of memory consumption (see table of figure 6), ANTS
algorithm reveals to have the best performances over the three
approaches, for each benchmark.

6. Conclusion

We presented a hybrid approach that mixes an exact solving
method guided by a metaheuristic. The latter uses a stochastic
ACO algorithm to solve a relaxed version of the problem to order
the variables. This pre-processing step allows the backtracking
method of the complete solver to select the most promising vari-
ables first. We focused our attention on the adaptation of ACO to
this problem and compared it to a deterministic implementation
on small problem instances.

Through three realistic series of benchmarks, we showed that
the ACO-based approach is as fast as using a brute-force short-
est path on easy problems, despite the computation overhead. On
most complex cases (when mandatory waypoints are distant from
the start-end axis), we recorded a gain of 50% on average compu-
tation time, for 5% of extra pre-processing time. Our approach is
consequently more stable and could easily solve bigger problem
instances while it would rapidly become intractable for the deter-
ministic approach. The ACO-based algorithm also revealed bet-
ter memory consumption performances, which is very interesting
in terms of on-line applications. Additionally, it could have in-
teresting properties in terms of replanning capabilities. However,
we also found that the method does not allow to prove optimality
faster than the deterministic method.

References

[1] M. Gondran and M. Minoux, “Graphes et algorithmes,” 1995.
[2] M. Fox and D. Long, “Automatic synthesis and use of generic types

in planning,” Proceedings of the Artificial Intelligence Planning
System, pp. 196–205, 2000.

[3] M. Fox and D. Long, “Pddl2.1: An extension to pddl for express-
ing temporal planning domains,” Journal of Artificial Intelligence
Research, vol. 20, 2003.

[4] D. M. R. Goldman, K. Haigh and M. Pelican, “Macbeth: A multi-
agent constraint-based planner,” Proceedings of the 21st Digital
Avionics Systems Conference.

[5] D. S. N. Meuleau, C. Plaunt and T. Smith, “Emergency landing
planning for damaged aircraft,” Proceedings of the 21st Innovative
Applications of Artificial Intelligence Conference, pp. 3247–3259,
2009.

[6] P. Laborie and M. Ghallab, “Planning with sharable resource con-
straints,” Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), 1995.

[7] N. Muscettola, Hsts: Integrating planning and scheduling.
Robotics Institute, Carnegie Mellon University, 1993.

[8] P. K. M. Abramson and B. Williams, “Executing reactive, model-
based programs through graph-based temporal planning,” Pro-
ceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI), 2001.

[9] E. Aarts and J. Lenstra, Local Search in Combinatorial Optimiza-
tion. 1997.

[10] V. Cerny, “A thermodynamical approach to the travelling salesman
problem: an efficient simulation algorithm,” Journal of Optimiza-
tion Theory and Applications, vol. 45, pp. 41–51, 1985.



Lucas et al./Information Sciences and Computer Engineering, Vol. 1, No. 2, 2010 85

[11] D. Goldberg, “Genetic algorithms in search, optimization and ma-
chine learning,” 1989.

[12] M. Dorigo and L. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,” IEEE Trans-
actions on Evolutionary Computation, vol. 1, pp. 53–66, 1997.

[13] F. Ajili and M. Wallace, Constraint and integer programming: To-
ward a unified methodology. McGraw Hill, Kluwer Academic
Publishers, 2003.

[14] R. K. G. R. S. Chien, B. Engelhardt and R. Sherwood, “Casper:
Space exploration through continuous planning,” Journal of IEEE
Intelligent Systems, vol. 16, 2001.

[15] N. N. P. Hart and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Sys-
tems, Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[16] A. Reinefeld and T. Marsland, “Enhanced iterative-deepening
search,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 16, no. 7, pp. 701–710, 1994.

[17] R. Korf, “Depth-first iterative-deepening: An optimal admissible
tree search,” Artificial Intelligence, vol. 27, pp. 97–109, 1985.

[18] S. Russel, “Efficient memory-bounded search methods,” Proceed-
ings of the Tenth European Conference on Artificial Intelligence
(ECAI), pp. 1–5, 1992.

[19] E. Hansen and R. Zhou, “Anytime heuristic search,” Journal of
Artificial Intelligence Research, vol. 28, pp. 267–297, 2007.

[20] X. S. S. Koenig and W. Yeoh, “Dynamic fringe-saving a*,” Pro-
ceedings of the 8th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), vol. 2, pp. 891–898,
2009.

[21] M. M. A. Botea and J. Schaeffer, “Near optimal hierarchical path-
finding,” Journal of Game Development, vol. 1, no. 1, 2004.

[22] Y. Deville and P. V. Hentenryck, “An efficient arc consistency al-
gorithm for a class of csp problems,” in Proceedings of the 12th
International Joint Conference on Artificial intelligence (IJCAI),
vol. 1, pp. 325–330, 1991.

[23] H. E. Sakkout and M. Wallace, “Probe backtrack search for min-
imal perturbations in dynamic scheduling,” Constraints Journal,
vol. 5, no. 4, pp. 359–388, 2000.

[24] T. White, S. Kaegi, and T. Oda, “Revisiting elitism in ant
colony optimization,” in Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO), vol. 2723/2003, p. 199,
Springer Berlin / Heidelberg, 2003.

[25] B. Bullnheimer, R. Hartl, and C. Strauß, “A new rank based version
of the ant system - a computational study,” Central European Jour-
nal for Operations Research and Economics, vol. 7, no. 1, pp. 25–
38, 1997.

François Lucas was born in France in 1985. He re-
ceived his Master’s degree from ESIEE Paris in 2008,
with a major in Real-Time Embedded Systems His in-
ternships led him to adapt a ground robot into fully-
automated driven system (Sagem Defense & Secu-
rity, 2008) and to design an environment simulator
aiming at validating various CBTC equipments sepa-

rately (Thales Rail Signaling Solution, 2009). Since December 2008 he
is a PhD student in Mines ParisTech. He is working in collaboration with
Sagem on efficient solving strategies for constrained path planning to be
embedded in military troop transport vehicles. His main research in-
terests are new hybridization techniques of metaheuristics and complete
constraint solvers.

Christophe Guettier had his PhD in 1997 from “Ecole
des Mines de Paris” in the area of combinatorial op-
timisation applied to the engineering of large-scale
parallel systems. Then, he joined the SME “Axlog
Ingénierie” where he developed some researches on
autonomous systems for the European Space Agency
(spacecraft constellation, deep space probes) and for

Dassault Aviation (unmanned combat aerial vehicle). In 2001, he has
been recruited by Xerox PARC to work on the DARPA NEST (Network-
ing Embedded System Technology) project led by Air Force Research
Lab and Boeing. In 2002, he joined Imperial College London where he
developed a research axis on solving constrained routing problems for
ad hoc networks. He joined SAGEM DS in 2004 where he leads several
new product developments.

Patrick Siarry was born in France in 1952. He re-
ceived the PhD degree from the University Paris 6,
in 1986 and the Doctorate of Sciences (Habilitation)
from the University Paris 11, in 1994. He was first in-
volved in the development of analog and digital mod-
els of nuclear power plants at Electricité de France
(E.D.F.). Since 1995 he is a full professor in auto-

matics and informatics. His main research interests are the applications
of new stochastic global optimization heuristics to various engineering
fields. He is also interested in the fitting of process models to experi-
mental data, the learning of fuzzy rule bases, and of neural networks.

 
Anne-Marie Milcent is an Engineer graduated from
Ecole Centrale Paris, and has also a Master of Sci-
ence from Standford University in Management Sci-
ence and Engineering. She started as a leading-edge
R&D engineer in Sagem Defense Security, working
on helicopter and airborne observation equipments.
During two years, she has been project leader in hap-

tic man - machine interfaces, opening the way of new generation inter-
faces for soldier systems. Then, she became in charge of R&D group
in future combat system programs where she has coordinated several
robotic and soldier systems architecture projects. She recently joined
the medical industry where she is now a R&D leader in the GUERBET
group.

Arnaud de La Fortelle is civil servant at the French
Transport Ministry and is both director of the Mines
robotics lab (CAOR) and of the Joint Research Unit
LaRA (La Route Automatisée - the automated road,
an INRIA-Mines ParisTech Consortium). He man-
aged for LaRA several French and European projects

(Puvame, Prevent/Intersafe, REACT, COM2REACT. . . ) and is cur-
rently coordinator of the European project GeoNet and of the French
project AROS. He has a Ph.D. in Applied Mathematics and engineer
degrees for the French Ecole Polytechnique and Ecole des Ponts et
Chaussées.


